铁杆蒿呋喃酮苷的合成

王青虎, 刘瑛, 包银苹, 晶晶, 吴荣君, 吴杰斯, 代那音台, 白音木其尔, 那仁朝克图

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (7) : 496-498.

PDF(1158 KB)
PDF(1158 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (7) : 496-498. DOI: 10.11669/cpj.2018.07.003
论 著

铁杆蒿呋喃酮苷的合成

  • 王青虎1, 刘瑛2, 包银苹1, 晶晶1, 吴荣君1, 吴杰斯1, 代那音台1, 白音木其尔1, 那仁朝克图1
作者信息 +

Synthesis of Sacroflavonoside

  • WANG Qing-hu1, LIU Ying2, BAO Yin-ping1, JING Jing1, WU Rong-jun1, WU Jie-si1, DAI Na-yin-tai1, BAI Yin-mu-qi-er1, NA Ren-chao-ke-tu1
Author information +
文章历史 +

摘要

目的 合成铁杆蒿呋喃酮苷,为以后研究其抗肿瘤活性奠定基础。方法 以茴香醛为原料,通过亲核加成、亲电取代及脱水成环反应合成铁杆蒿呋喃酮苷,并运用核磁共振鉴别(NMR)法鉴定其结构式。结果 通过化学合成得到铁杆蒿呋喃酮苷,产率为53%。结论 合成铁杆蒿呋喃酮苷工艺路线简单,反应条件温和,原料易得,易于大规模制备。

Abstract

OBJECTIVE To synthesize sacroflavonoside for laying foundation for the future study of its anti-tumor activity. METHODS Sacroflavonoside was synthesized by nucleophilic addition, electrophilic substitution and dehydration cyclization reaction, and its structure was identified by NMR and MS. RESULTS Sacroflavonoside was obtained by chemical synthesis and the yield was 53%. CONCLUSION The synthesis process of sacroflavonoside is simple, the reaction condition is moderate, the raw material is easy to obtain and it is easy to prepare on a large scale.

关键词

铁杆蒿呋喃酮苷 / 茴香醛 / 合成 / 核磁共振鉴别

Key words

sacroflavonoside / aubepin / synthesis / NMR identification

引用本文

导出引用
王青虎, 刘瑛, 包银苹, 晶晶, 吴荣君, 吴杰斯, 代那音台, 白音木其尔, 那仁朝克图. 铁杆蒿呋喃酮苷的合成[J]. 中国药学杂志, 2018, 53(7): 496-498 https://doi.org/10.11669/cpj.2018.07.003
WANG Qing-hu, LIU Ying, BAO Yin-ping, JING Jing, WU Rong-jun, WU Jie-si, DAI Na-yin-tai, BAI Yin-mu-qi-er, NA Ren-chao-ke-tu. Synthesis of Sacroflavonoside[J]. Chinese Pharmaceutical Journal, 2018, 53(7): 496-498 https://doi.org/10.11669/cpj.2018.07.003
中图分类号: R914   

参考文献

[1] BAO W G, WANG Q H, HAN J J, et al. HPLC Analysis of twelve compounds from Artemisa sacrorum and their structural elucidation[J]. J Food Bio, 2016, 30(10): 360-369.
[2] RAY P S, MAULIK G, CORDIS G A, et al. The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury[J]. Free Radical Bio Med, 1999, 27(6): 160-169.
[3] GURUSAMY N, RAY D, LEKLI I, et al. Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infracted myocardium[J]. J Cell Mol Med, 2010, 14(11): 2235-2239.
[4] CSISZAR A, LABINSKYY N, OLSON S, et al. Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats[J]. Hypertension, 2009, 54(4): 668-675.
[5] ARICHI H, KIMURA Y, OKUDA H, et al. Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. Et Zucc. on lipid metabolism[J]. Chem Pharm Bull, 1982, 30(8): 1766-1770.
[6] SHARMA S, MISRA C S, ARUMUGAM S, et al. Antidiabetic activity of resveratrol, a known SIRT1 activator in a genetic model for type 2 diabetes[J]. Phytother Res, 2011, 25(12): 67-73.
[7] RAHMAN M A, KIM N H, KIM S, et al. Antiproliferative and cytotoxic effects of resveratrol in mitochondria-mediated apoptosis in rat B103 neuroblastoma cells[J]. Korean J Physiol Pharm, 2012, 16(12): 321-326.
[8] LEE Y J, LEE Y J, IM J H, et al. Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells[J]. Food Chem Toxicol, 2013, 52(3): 61-68.
[9] NDIAYE M, PHILIPPE C, MUKHTAR H, et al. The grape antioxidant resveratrol for skin disorders: promise, prospects, and challenges[J]. Arch Biochem Biophys, 2011, 508(19): 164-170.
[10] BUSQUETS S, AMETLLER E, FUSTER G, et al. Resveratrol, a natural diphenol, reduces metastatic growth in an experimental cancer model[J]. Cancer Lett, 2007, 245(20): 144-148.
[11] DAVEY A E, SCHAEFFER M J, TAYLOR R J K. Synthesis of the novel anti-leukaemic tetrahydrocyclopenta benzofuran, rocaglamide and related synthetic studies[J]. J Chem Soc Perkin Trans, 1992, 1(5): 2657-2666.
[12] XIANG J C, CHENG Y, WANG M, et al. Direct construction of 4-hydroxybenzils via para-selective C-C bond coupling of phenols and aryl methyl ketones[J]. Org Lett, 2016, 18(10): 4360-4363.

基金

国家自然科学基金项目资助(81660698)
PDF(1158 KB)

Accesses

Citation

Detail

段落导航
相关文章

/